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Near infrared (NIR)-spectroscopy and in-vitro dissolution absorption 

system 2 (IDAS2) can help detect changes in the quality of generic 

drugs 

While Health authorities in Panama strive to increase generic drug use to contain the 

rising costs of medicines, there is still hesitation to embrace generic drugs. Thus, 

regulators and drug companies need to ensure the quality, safety and efficacy of generic 

drugs. One prevailing concern is the absence of control over lot-to-lot changes, which 

may impact consistent therapeutic performance. The objective of this work was to 

determine whether near-infrared spectroscopy (NIR) could detect product changes.  

Calibration models were built using reference (standard) tablets of two products: Virax
®
 

(200 mg acyclovir) and Amlopin
®
 (5 mg amlodipine). Then, to assess the sensitivity of 

NIR to product changes we compared reference versus deliberately-modified 

formulations of these products.  Comparisons were made using principal component 

analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) of NIR spectra. 

Several modified lots were different from reference lots, and 3D score plots showed 

greater discrimination by PLS-DA than PCA. The K
th
 nearest neighbour scores (KNN) of 

the modified batches were used to classify formulations as identical or not identical 

versus the reference. In addition, the differences detected by NIR were correlated with 

different in vitro dissolution and/or permeation in the in vitro dissolution absorption 

system 2 (IDAS2): NIR and IDAS2 yielded the same difference rank-order of difference 

for the modified lots tested. This study suggests that NIR and IDAS2 can help detect lots 

of generic drugs that differ from the reference lots. This strategy may help regulatory 

agencies in developing countries to safeguard patients against changes in generic 

products. 

Keywords: formulation; dissolution; permeability; near-infrared spectroscopy; 

IDAS2. 
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Introduction 

Poor access to high-quality medicines in Latin America is a burden that it is yet to be 

overcome [1]. Despite various initiatives to help solve this problem, the main hurdle 

remains the lack of a harmonized regulatory policy that can establish improved 

standards and requirements for drug approval that ensures availability and access to 

quality drug products within borders in a timely manner [2]. Such a regulatory agency 

could counter the epidemic of substandard, spurious, falsely labelled, falsified, or 

counterfeit (SSFFC) medicines that increasingly continues to affect the region as well as 

to increase the confidence of patients and healthcare professionals in generic 

pharmaceutical products [3-5].   This problem is particularly accentuated in smaller 

countries, such as Panama, where many drug products are either imported from 

insufficiently regulated markets or produced by smaller local/regional companies that 

do not always comply with acceptable manufacturing standards. To make matters 

worse, a large proportion of the products purported as ‘generics’ in this region, are 

simply copies or ‘similars’ and have not really demonstrated to be bioequivalent to the 

innovators;  a critical requirement for interchangeability [6]. Against this daunting 

background, regulatory authorities in Latin American countries still, like their 

counterparts in developed countries, have the responsibility to ensure the quality, safety 

and efficacy of drug products used to treat the ailments afflicting their populations. 

Unfortunately, an increase in regulatory requirements to ensure drug product quality 

also presents a financial burden for the regional pharmaceutical industry, especially 

small-medium size manufacturers. One area of particular concern is the potential for 

(unreported or unintended) changes in formulation or manufacturing processes that may 

result in inter-lot product variability, as the impact of these changes on safety or 

efficacy is unknown. Considering the prevailing lack of existence and/or enforcement of 
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bioequivalence requirements, there is an urgent need to develop/implement rapid and 

cost-effective strategies to monitor commercial lots of products before they enter the 

market To this end, we have examined near-infrared (NIR) spectroscopy, a low-cost,  

versatile technique that has been used in a wide range of applications in the 

pharmaceutical industry [7], as a potential tool for monitoring possible changes in 

product characteristics. NIR records the transmittance or reflectance spectra of a drug 

product in the near-infrared region of the electromagnetic spectrum (780 - 2500 nm), 

generating an NIR spectra consisting of overtone and combination bands dominated by 

CH, OH and NH covalent bonds which are interpreted and analyzed quantitatively and 

qualitatively using multivariate calibration algorithms and chemometrics [7]. Given its 

speed and non-destructive nature, NIR spectroscopy is used to monitor various steps in 

the pharmaceutical manufacturing process, such as the identification of raw materials to 

the quality control of formulations for final release [8,9]. So, we believe that the unique 

features of NIR could make it a valuable tool to help resource-constrained regulatory 

authorities in Latin America to monitor the quality of generic drugs in their markets. 

Since, generally, one lot of each product is subjected to routine quality control tests 

while the product is being evaluated for registration, it is feasible to obtain NIR data 

from the same registration lot(s), which could be used as the reference lot for each 

product. It is safe to assume that if the composition and manufacturing process are not 

changed, the NIR spectra of new lots should be the same as that of the reference lot; 

however, conversely, newer lots with different spectra may indicate that some change 

was introduced in the composition or manufacturing process. Thus, the main objective 

of this study was to assess whether near-infrared (NIR) spectroscopy is sufficiently 

sensitive to detect differences between reference lots of Amlopin
®
 (5 mg tablet of 

amlodipine) or Virax
®
 (400 mg tablet of acyclovir) and deliberately modified lots of 
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each product.  For comparison, calibration models were constructed and validated using 

as reference tablets of the standard formulation for each product and principal 

component analysis analysis (PCA) and partial least squares (PLS) discriminant 

analysis were applied to the NIR spectra of reference and modified tablets. Finally, the 

K
th

 nearest neighbour score (KNN) of the modified batches was used as an indicator of 

whether a modified batch was different from the reference batch. To further assess 

whether the differences in drug formulations detected by NIR 

spectroscopy/chemometrics were linked to differences in vitro biopharmaceutical 

properties performance, such as dissolution and permeation, some formulations, from 

both Virax
®
 and Amlopin

®
 were also evaluated in the in-vitro dissolution absorption 

system 2 (IDAS2), using the two-stage protocol to  mimic transfer from an acidic (i.e. 

gastric) to near-neutral (i.e. intestinal) environments, and a physiologically relevant 

dissolution volume. 

Materials and Methods 

Formulations Evaluation by NIR Spectroscopy 

Raw materials 

The formulations evaluated contained the following components: Acyclovir from 

Zhejiang Charioteer Pharmaceutical, China; Amlodipine besylate from Cadila 

Healthcare, India; Sodium Starch Glycolate (SSG) from Vivastar, Germany; 

Microcrystalline Cellulose PH 102 (MC) from JRS Pharma, Germany; Sodium 

Croscarmellose (SC) from Blanver, Brazil; spray-dried Lactose (sdL) from Foremost 

Farm, USA; Povidone K 30 from BASF, USA; Colloidal Silicon Dioxide (CSD) from 

Evonik, USA; Magnesium stearate from FACI S.P.A, Carasco, Italy. 

Acc
ep

te
d 

M
an

us
cr

ipt



Formulations 

This study  examined two APIs in tablet forms: a high loading API, acyclovir (400 mg 

tablet, Virax
®
, Medipan, S.A., Chilibre, Panama), and a low loading API, amlodipine (5 

mg tablet, Amlopin
®
, Medipan, S.A., Chilibre, Panama).  For each API, three different 

lots of tablets of standard formulation and strength (i.e. reference) were obtained 

commercially.  In addition, for each API, tablets were manufactured with: a) modified 

amount of active, b) unchanged amount of active and varied amounts of excipients and 

c) unchanged amount of active and substitution of some excipients. All modified lots of 

tablets were manufactured by Medipan, S.A. (Chilibre, Panama). The modifications of 

APIs amount and excipients for acyclovir and amlodipine formulations are listed in 

Tables 1 and 2, respectively. Note that Lot K, the blank lot, occurs in both tables.  

Preparation of Virax
®

 formulations  

The acyclovir formulations were made by wet granulation. In a high-speed mixer, 

acyclovir, sodium starch glycolate and microcrystalline cellulose PH 102 were mixed 

for 3 minutes; the mixture was granulated with an aqueous solution of povidone K30. 

The granules were dried at 50°C in an oven for 12 hours. The dried granules were 

sieved by 1.0 mm mesh tapered mill at 3000 rpm and mixed with the screened colloidal 

silicon dioxide and finally the mixture was lubricated with the magnesium stearate for 2 

minutes. The mixture was compressed to tablets using flat grooved 11 mm punches in a 

Ronchi AR 18-23 station tablet press. 

Preparation of Amlopin
®

 formulations  

The formulations of Amlopin
®
 were manufactured by direct compression. In a V-

blender, amlodipine besylate was combined with sodium starch glycolate and 

microcrystalline cellulose PH 102 for 5 minutes, then lubricated with magnesium 
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stearate and left mixing for 2 minutes. The mixture was compressed using flat grooved 

9 mm punches in the Ronchi AR 18-23 station tablet press. 

Data acquisition 

Twenty tablets were analyzed from each lot and both sides of each tablet were scanned 

individually to generate 40 samples per lot. The NIR spectra from each of three standard 

(reference) lots of Amlopin
®
 and Virax

®
 were acquired and NIR spectra generated from 

each modified lot were used for comparison with the reference lots. Measurements were 

performed in the reflectance mode on a Thermo-Nicolet Antaris II FT Near Infrared 

Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an 

integrating sphere module.   Thirty-two scans per sample at 8 cm
-1

 resolution over the 

4000 to 10000 cm
-1

 region were made. Data spacing was 3.85 cm
-1

.  The data files were 

saved in Thermo-Nicolet Result and saved as Excel csv worksheets to export to other 

programs for model development.   

Data analysis   

Data analysis using Thermo-Nicolet TQ Analyst software was limited to inspection of 

the data and pre-treatment of the spectra to assess data quality. Sub-sets of the data were 

processed using Unscrambler


 from Camo to check feasibility of various Chemometric 

techniques. Primarily, the NIR data were modelled using Partial Least Squares-

Discriminants (PLS-Discriminants), Principal Components Analysis (PCA) and K
th

 

Nearest Neighbour (KNN) running under Solo 8.6 from Eigenvector Research 

(Manson, Washington, USA). The raw spectra data were assigned to sample class for 

calibration. The wavenumber region chosen for the model development was dependent 

on the molecular structure of the active ingredient, the nature of excipients, as well as 

the signal to noise in the processed spectra.    In order to remove scatter and other non-
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linearity and to maximize any difference, the raw spectra were pre-processed in the 

following order [10]: a) Standard normal variate (SNV), b) Savitzky-Golay 2
nd

 

Derivative , and c) Mean Centered. 

The PLS-discriminant or PCA models were calibrated using three different 

current lots of either Amlopin
®
 tablets or Virax

®
 tablets that had been obtained 

commercially. These were the training sets.  The algorithm employed for the PLS model 

was the SIMPLS, which calculates the PLS factors directly as linear combinations of 

the original variables [11].  The PCA model employed the SVD algorithm [12]. The 

calibration was cross-validated: venetian blinds w/10 splits and 1 sample per split. The 

number of leveraged variables or components was chosen to: a) maximize the 

sensitivity and selectivity of the calibration class standards, b) minimize the root mean 

standard error of calibration and cross validation, and c) for each molecule, the 

chemometric analysis was performed with adjusted variables as listed in Tables 3 and 4.  

Formulations Evaluation in IDAS2 

Materials 

C2BBe1 cells were obtained from American Type Culture Collection (Manassas, VA). 

D-glucose, 2-(N-morpholino)ethanesulfonic acid (MES), Bis(2-hydroxyethyl)amino-

tris(hydroxylmethyl)-methane (Bis-Tris), and bovine serum albumin (BSA) were 

obtained from Sigma-Aldrich (St. Louis, MO). Simulated intestinal fluid (SIF) powder 

was purchased from Biorelevant (Croydon, UK). Hanks’ balanced salt solution (HBSS, 

10X concentrated, Gibco Ref # 14065-056), Dulbecco’s modified Eagle’s medium 

(DMEM), Dulbecco’s phosphate-buffered saline (DPBS), N-(2-

Hydroxyethyl)piperazine-N-(2-ethanesulfonic acid) (HEPES, 1 M solution), fetal 

bovine serum (FBS), penicillin-streptomycin mixture, non-essential amino acids 
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(NEAA), sodium pyruvate, and trypsin were obtained from Thermo Fisher Scientific 

(Waltham, MA). Rat tail collagen type 1 and Costar
®
 Snapwell plates (6-well format, 

1.13 cm
2
 insert area, 0.4 µm pore size) were purchased from Corning Life Sciences 

(Corning, NY). Polytetrafluoroethylene (PTFE) syringe filters (porosity: 0.45 m, 

diameter: 13 mm, hydrophilic) were purchased from Scientific Equipment Company 

(Aston, PA).  All drug products and chemicals were stored properly at all times and 

used before their expiration dates.  

C2BBe1 cell culture  

C2BBe1 cells were maintained in DMEM containing 10% FBS, 1% NEAA, 4 mM L-

glutamine, 1 mM sodium pyruvate, 100 IU/mL penicillin, and 100 µg/mL streptomycin 

in a humidified incubator (37°C, 5% CO2).  The culture medium was changed three 

times weekly, and cell growth was observed by light microscopy.  When the stock 

cultures were ~80% confluent, the cells were harvested by trypsinization and seeded at 

a density of 60,000 cells/cm
2
 onto rat tail collagen-coated polycarbonate membrane 

filters in Snapwell plates to grow and differentiate into polarized cell monolayers for the 

permeability studies.  The culture medium was changed every other day until use (20 to 

28 days post seeding). To ensure cell monolayer integrity, prior to experimental use, 

each batch of cells was subjected to quality control (QC) tests consisting of transport 

measurements of atenolol (low permeability marker compound), propranolol (high 

permeability marker compound), digoxin (p-glycoprotein probe substrate) and estrone3-

sulfate (BCRP probe substrate), across randomly selected C2BBe1 cell monolayers. 

Only cell batches that passed QC criteria were selected for subsequent IDAS2 assays. 
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IDAS2 Experiments 

IDAS2 is comprised of a modified USP II dissolution vessel equipped with two 

permeation chambers. C2BBe1 cell monolayers are mounted at the interface between 

dissolution medium and the permeation chambers. In this study, the IDAS2 assays were 

conducted under 2-stage conditions. IDAS2 assays under the 2-stage protocol involved 

two consecutive steps: 1) the tested drug product initially underwent dissolution in 

acidic pH 1.6 for 20 minutes to mimic the in vivo gastric condition; 2) the pH was 

adjusted to pH 6.5 with concomitant increase of SIF concentration to 2.24 mg/ml and 

dissolution and permeation were monitored for additional 120 minutes in simulated 

fasted state intestinal environment. The dissolution vessels (n=3) were filled with 400 

mL of simulated gastric fluid (SGF) containing 34 mM NaCl and 0.024 N HCl in 

Millipore deionized water, pH 1.6. The IDAS2 system was set to a temperature of 37°C 

and a paddle speed of 50 rpm. Once the temperature reached 37°C, an 

atenolol/minoxidil mixture was added as controls to monitor cell monolayer integrity 

and inter-assay consistency. Two tablets of either test compound (acyclovir or 

amlodipine) were then added to start the assay. Donor samples were taken at 10 and 20 

minutes. After 20 min of the drug dissolution in SGF, the medium was switched to 

fasted-state simulated intestinal fluid (FaSSIF) by adding 100 mL of a solution 

containing 1.12 g of SIF, 40 mL of 8x HBSS and 60 mL of 350 mM Bis-Tris base.  

Right after verifying that the pH was 6.5 (adjusting it, if necessary), the permeation 

chambers with C2BBe1 cell monolayers were submerged into the dissolution medium, 

and 8 mL of permeation medium (HBSS containing 4.5% BSA, pH 7.4) were added 

into the permeation chambers. The composition of the final FaSSIF medium created by 

combining 400 mL of SGF and 100 mL of 5X FaSSIF consisted of 3 mM taurocholate, 

0.75 mM phospholipids, 175 mM sodium, 133 mM chloride, 29 mM phosphate, and 42 
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mM Bis-Tris in 0.64X HBSS.  Donor samples (2 mL each) were taken at 30, 40, 50, 80, 

110, and 140 minutes, and immediately filtered through 0.45 m syringe filters and 

approximately first mL of filtrate was discarded and the remaining was collected for 

analysis. Receiver samples were taken at 55, 85, 115, and 145 minutes.  For acyclovir, 

donor samples were analyzed using ultraviolet-visible (UV-vis) spectroscopy at 280nm 

and receiver samples were analyzed by liquid chromatography-mass spectrometry (LC-

MS/MS). For amlodipine, donor samples were analyzed using UV-vis spectroscopy at 

230 nm and receiver samples were analyzed by LC-MS/MS.    

Results and Discussion 

In this study, we propose the implementation of tools to help monitor against inter-lot 

changes of generic products.   This strategy should work well in small Latin American 

countries because during the registration process (e.g., every 5-7 years) at least one lot 

of each product is submitted to the regulatory agencies for quality control tests.  Thus, 

for each product, the ‘registration’ lot could be subjected to additional tests whose 

results could be used as the baseline or reference against which to measure the 

performance of future lots of each product. 

NIR Analysis  

Since many formulation changes would not be detected by routine quality control tests 

[13], which is not surprising because they are not designed for this purpose, the 

generation of baseline values based on more sensitive techniques seems necessary.  

Keeping in mind that the ultimate utility of these measurements will be realized only if 

they can be performed rapidly and at a reasonable cost, we believe that spectroscopic 

techniques such as NIR are very attractive because they are quick and non-destructive. 

To assess the feasibility of using NIR for this application we chose two APIs, 
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amlodipine 5 mg tablets (Amlopin
®
) and acyclovir 400 mg tablets (Virax

®
), widely 

available in Panama and other countries in the region. Since the first thing we wanted to 

know was whether NIR could be used to detect changes in the composition of standard 

formulations of these products, we elaborated 12 batches of each product with pre-

determined differences. These products differed in the amount of API and excipients or 

specific excipients utilized. As a negative control we used a formulation that contained 

the same amount of excipients as the reference formulation but no active ingredient. All 

the Virax
®
 tablets with a modified amount (i.e. 115%, 110%, 90% or 85%) of the active 

ingredient showed clear differences from the reference tablets (containing 100% API) 

regardless of whether the data was analyzed by PCA or PLS-DA. The range (4,000-

10,000 cm
-1

) of the spectra analyzed in this study showed the most relevant features of 

the organic substances.     

Exploratory analysis based on principal components analysis (PCA)  

Since the reference models were constructed from three lots of intact tablets (400 mg 

acyclovir, Virax
®
 and 5 mg amlodipine, Amlopin

®
), which by design were substantially 

different from their respective modified lots, either in the amount of the APIs or in the 

amount or identity of excipients (Tables 1 and 2), their NIR spectra were expected to be 

different. However, it was crucial to determine whether indeed the NIR approach was 

sensitive enough to detect the built-in differences between the reference and modified 

products. Indeed, the potential utility of this approach to detect inter-lot changes rests on 

its ability to differentiate between lots that are substantially different from the reference 

product (i.e. Not-identical) and lots that are not substantially different (i.e. Identical). 

After using the reference (current) lots of tablets of (Amlopin
®
) and (Virax

®
) as training 

sets to build and validate the calibration models, we compared the reference versus 

Acc
ep

te
d 

M
an

us
cr

ipt



modified lots of each product using principal component analysis (PCA), partial least 

squares discriminant analysis (PLS-DA) and the K
th

 nearest neighbour (KNN) test.     

Classification model based on principal component analysis (PCA) 

Principal component analysis (PCA) was used to examine the possible clustering in 

samples and investigate the extent to which NIR features can distinguish among 

different amounts of the API and excipients in the dosage forms. The PCA model used 

only the three commercial lots of the drug product as training sets.   PCA analysis of 

Virax
®
 tablets over the 4,000 to 10,000 cm

-1
 range conclusively showed that both, Lot 

A and Lot B, had a large degree of overlap, with each other but were well-separated 

from the reference lots (Figure 1A). In addition, PCA analysis also was able to detect a 

clear separation between modified Lots F, J, and K and the reference lots (Figure 1B), 

but other modified lots were separated to a lesser degree. Based on the confidence 

ellipses the API-modified Lot C was similar to the reference lots, and somewhat 

different from Lot D, but not as much as the difference from A and B. These 

observations suggest that although differences related to both, higher or lower than 

normal amounts of API were detected, the spectral properties of the product were more 

easily distorted by a 10% or greater excess of acyclovir than by a deficit of comparable 

magnitude. While the 3D score plot for modified excipients unequivocally distinguished 

modified Lots F, J and K from the reference lots (Figure 1B), the separation for the 

other excipient-modified lots was not clear (Figure 1B). The greatest distancing of Lot 

K (placebo) from the reference lot in the 3D plot is not surprising because the reference 

lot NIR spectrum is dominated by the acyclovir bands. 

The 3D scatter plot of the principal components (PCA) for Amlopin
®
 tablets 

shows that the first three scores on the PCs accounted for almost 73% of the total 

variation in the NIR spectra (Figure 2). The absence of a clear dispersion among 
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different lots, together with the overlaps between reference lots and API-modified Lots 

A-D (Figure 2A), implies that the data structure or relationship may be complex and 

nonlinear. Similar overlap was observed when comparing the training set reference lots 

to the excipient-modified Lots E-K (Figure 2B). However, the major dispersion 

observed for Lot J (replacement of spray-dried lactose for microcrystalline cellulose), 

suggests that for Amlopin
®
, spray-dried lactose (sdL) is essential to maintain the 

spectral integrity of the product. The sensitivity of the product’s fingerprint to the 

amount of sdL could be assessed by evaluating lots containing varying amounts of sdL 

(instead of the complete substitution used in Lot J). 

Calibration model based on partial least squares - discriminant analysis (PLS-

DA) 

Despite the clear distancing between reference and excipient-modified lots 

obtained in many cases, PCA was still a poor discrimination model because it functions 

by reducing dimensionality while preserving much variance in a high dimensional 

space. PCA, does not consider class labels, and is thus an “unsupervised” classifier [14].    

For example, the 3D plot showed clear discrimination only for Lots J and K (placebo). 

Hence, we also used partial least squares-discriminant analysis (PLS-DA), a pattern 

recognition method well known for its power of discrimination, to determine whether 

this strategy would yield greater discrimination than PCA.  PLS-DA can be thought of 

as a “supervised” version of Principal Component Analysis (PCA) in the sense that it 

achieves dimensionality reduction but with full awareness of the class labels [14].  PLS-

DA’s supervised nature has been shown to be efficacious in analysis of large, 

sometimes noisy data sets [15].  

To achieve a better method for classifying the modified lots of Virax
®
 and 

Amlopin
®

 tablets as identical or non-identical to the unmodified (reference) lots, we 
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used the supervised pattern classification approach: PLS-DA. The PLS-DA model was 

constructed with the choice of the optimal number (i.e. 3) of leveraged variables (LVs), 

which was carried out by a 3-fold cross validation procedure. The plan was to determine 

if “supervised” PLS-DA would discriminate better than PCA, using identical processing 

parameters, between the training set lots and the modified lots.  Thus, the data for the 

PLS-DA calibration model was pre-processed in the same manner as that described 

earlier for PCA (entire wavenumber range, removal of some outliers from calibration, 

SNV, Savitky-Golay 2
nd

 derivative, and mean centered) using three current 

(commercial) lots as the training set for each product (Virax
®
 and Amlopin

®
).  The 

established models for Virax
®
 and Amlopin

®
 tablets were further validated using the 

same three current lots of each product as validation sets to determine which method 

was more robust to develop/refine models for general use in the detection of 

formulation changes.   Analysis of the NIR full spectra from the 4,000 – 10,000 cm
-1

 

range showed the influence of the number of LVs in the PLS-DA model on the 

classification of API-modified and excipient-modified lots of Virax
®
, which indicates 

that the classification worked well for API-modified lots (Figure 3A), but not as well for 

excipient-modified batches, except for Lot F (Figure 3B). 

PLS-DA models using the partial spectra (4,000 to 5,500 cm
-1

) performed better 

than the corresponding full range spectral analysis in differentiating between reference 

and either API-modified or excipient-modified lots (Figure 4A, B). For example, there 

was a clear separation between API-modified and the reference lots of Virax
®
. Note that 

Lots C and D are separated from the reference lots and, as well as, from each other, 

although to a lesser extent. In addition, the API-modified Lots A and B were clearly 

distinguishable from all the other lots.  The score plot for the excipient-modified and 

reference lots showed degrees of separation superior to those attained with PCA or PLS-
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DA over the entire wavenumber range. Given the substantial magnitude of the changes 

incorporated into the modified lots, these results are interpreted as demonstrating a high 

rate of correct discrimination. 

In the case of Amlopin
®
, compared to the calibration model for PCA, the PLS-

DA-derived model using the full spectra was more sensitive using identical 

wavenumber range and pre-processing,  as indicated by a greater separation between the 

reference lots and the modified lots (A-D) in detecting changes in the formulation  

(Figure 5A). A similar trend was observed when comparing the reference lots with the 

excipient-modified Lots E-I (Figure 5B). Despite the wide dispersion shown, the PLS-

DA model over the entire wavenumber range did not show clear separation among 

either API-modified lots or excipient-modified lots (Figure 5A,B). As expected, the 

excipient-substituted Lot J was the most distant from the reference lots and the other 

excipient-modified lots. This low dispersion might be explained by the large amount of 

noise. 

PLS-DA results obtained using the 4,000 to 6,000 cm -1 range during model 

development were very encouraging. The 3D plot of PLS-DA leverage variables for 

Amlopin
®

 shows separation of reference lots from all the API-modified lots and 

excipient-modified lots (Figure 6A, B). These results confirm the robustness of these 

models to discriminate between modified and reference lots. 

Classification model based on K
th

 nearest neighbour (KNN) 

K-Nearest Neighbour (KNN) is a linear regression, non-parametric method applied to a 

set of NIR spectra to predict an unknown spectrum as a function of the K closest spectra 

available (the K-Nearest Neighbours). A comparison of the KNN values of the 

prediction (modified) lots with those of the validation (reference) lots allows their 

classification as identical or not identical. An appropriate value of K has a profound 
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influence on the discrimination rate of the KNN model, which is determined by cross 

validation of the reference samples. Generally, the parameter K is an odd number less 

than 10 and the optimum KNN model is achieved when K = 3. In this study, PCs and 

LVs input data were used in the KNN classification model. Lots with KNN scores ≤ 1 

were classified as identical to their reference lots and those with KNN > 1 as not 

identical. From the viewpoint of a monitoring program aiming to prevent 

uncharacterized changes in an approved product, the implication of this approach is that 

when a given lot is classified as identical, it is reasonable to assume that its composition 

and manufacturing process have not deviated from those associated with the reference 

lot. In contrast, it is highly likely that lots classified as non-identical have undergone 

some change vis-à-vis the reference lots.   

The KNN results for the reference lots used as calibration samples (i.e. Lots 1-3) 

and modified lots used as prediction samples (i.e. Lots A-K) for Virax
®
 are shown in 

Table 1. When the full range (4,000 – 10,000 cm
-1

) was used, the lots with higher 

amounts of acyclovir, API-modified Lot A (115%) and Lot B (110%), showed 

respective KNN values of 4.15 and 4.72 (Table 5). This classification based on KNN 

scores is consistent with the observations made with PCA. For example, PCA-derived 

score plots showed that, the lots containing more acyclovir, A and B, exhibited greater 

distancing from the reference lots (100%) than the lots containing less acyclovir, C 

(90%) and D (85%), also had larger KNN scores. That both methods detected 

differences between all the modified formulations and the reference product suggests 

that differences equal or greater than 10% in the API amounts of Virax
®
 were sufficient 

to cause changes in the NIR spectra of the formulations that were quantifiable by both 

statistical treatments of the data. This observation is reasonable because the magnitude 

of the modifications dialed into the different formulations (batches) needed to be 
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sufficient to generate measurable differences in NIR spectra, compared with the 

reference product, while avoiding hypersensitivity which could translate into an 

excessive number of false-positives (i.e. over-discrimination). 

However, excipient-modified Lot F (50% SSG, completed with MC) and Lot J 

(0% MC; substituted with sdL) with respective KNN values of 6.05 and 3.10 exhibited 

the biggest difference when compared to the references lots. 

Also, the KNN values calculated with LVs input data (Table 6) agreed with 

results obtained for PCs input data in that the modified-API Lot A (115%) and Lot B 

(110%) showed the largest KNN values of 4.84 and 5.57, respectively. In a similar way, 

the excipient-modified Lot F and Lot J showed the largest KNN values of 8.33 and 

3.18, respectively. Together, the different impact of the wavenumber range used for 

PCA or PLS to generate the PCs and LVs input data for KNN classification indicates 

that, since the optimal classification model appears to be influenced by multiple factors, 

classification models need to be optimized for each  product. 

Although the data for Amlopin
®
 was subjected to the same treatment used with 

Virax
®
, the PCs input-derived KNN model for both API and excipient-modified 

achieved little discrimination in the prediction sets when the full wavenumber range 

was used (Table 7). Only modified Lots J and K showed discrimination, as indicated by 

significant KNN values of 8.64 and 1.68. Interestingly, the KNN value of 8.64 

determined for Lot J indicates that the associated change in composition (MC was 

entirely substituted with sdL) had a major significant impact in the NIR data, and thus, 

this type of change could be readily detected. 

Using the LVs input data of full and partial wavenumber ranges to generate the 

outcome KNN values was successful, with KNN values greater than one for both, API 

and excipient-modified formulations (Table 8). The modified Lot J showed the highest 
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difference in both full and partial wavelength regions with KNN values of 25.01 and 

35.44, respectively. Also, within the partial-range data there is a clear difference in 

KNN scores for Lots E and H relative to Lots F, G and I, thus demonstrating the ability 

of the model not only to distinguish between reference and modified lots, but to 

distinguish between the excipient modified lots.    

Classification model based on K
th

 nearest neighbour (KNN) 

To investigate whether the differences in drug formulations detected by NIR 

spectroscopy/chemometrics could be associated with in vitro performance, such as 

dissolution and permeation, a few formulations were also evaluated in IDAS2, using the 

two-stage protocol to mimic transfer from an acidic (i.e. gastric) to near-neutral (i.e. 

intestinal) environments, and a physiologically relevant dissolution volume. 

For Virax
®
, although KNN indicated that all formulations were different from 

the reference lot, regardless of whether the input method used (i.e. PCs or LVs), 

following the assumption that, in principle, higher KNN values are expected to exhibit 

greater differences from the reference lot, we selected 3 Virax
®
 formulations (i.e. Lots I, 

J and F), all classified as Not-identical to the reference lot, but with, respective, KNN 

values of 1.46/1.66, 3.10/3.18, and 6.05/8.33 (Tables 5 and 6), to determine if IDAS2 

could detect dissolution and/or permeation properties consistent with the estimated 

KNN values.   The dissolution results showed that Lot F was the farthest from the 

standard lot, followed by tablet J, with Lot I being the closest (Figure 7a). This order of 

separation is similar to that seen in the NIR results. IDAS2 permeation results were 

consistent with the NIR data in that Lot F also showed the greatest separation from the 

reference lot. In addition, the intermediate lots, Lot I and Lot J, were almost identical to 

each other, but different from both, the reference lot and Lot F (Figure 7B). 

Interestingly, Lot I showed a similar dissolution profile to the reference lot, but lower 
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permeation than the reference, this result indicates that substitution of sodium starch 

glycolate with sodium croscarmellose had less effect on acyclovir dissolution but 

greater impact on its permeation. A conventional dissolution test alone may fail to 

detect this change in formulation. 

In the case of Amlopin
®
, since formulation classification as Identical or Not-

identical based on KNN values depended on the method (i.e. PCA or PLS-DA) used to 

derive the input variables used in KNN determination, we wanted to know whether 

IDAS2 could provide another way to experimentally compare formulations. So, for 

evaluation in IDAS2, we chose one formulation (Lot J) which appeared the farthest 

from the reference in the 3D Score plot (Figure 5B) as well as several formulations that 

were much closer to the reference lot, to determine whether they were distinguishable or 

not using this system. IDAS2 data showed a strong correspondence with the 3D Score 

plot for the formulations tested because all the lots classified as Not-identical based on 

the KNN values also behaved differently in IDAS2. Lot J, the most distant from the 

reference lot, was also different from the intermediate lots (F, G, and H) in dissolution 

and permeation (Figure 8A, B). Lots F, G, and H, all of which had dissolution and 

permeation rates clustered together, between the reference lot and Lot J, were consistent 

with their almost identical KNN values (i.e. 1.58, 1.59 and 1.54 using full rang 

wavelength rang in Table 8 ). In addition, Lot J, the formulation with the highest KNN 

derived from both, PCs input or LVs input, was substantially different from the other 3 

formulations tested. 
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Conclusions 

The calibration models derived from NIR spectroscopy were sufficiently sensitive to 

distinguish between standard (reference) and modified lots of low API loading 

Amlopin
®

 (containing 5 mg of amlodipine) and high API loading Virax
®
 (containing 

400 mg of acyclovir), which demonstrates the potential utility of this technique in 

monitoring against potential inter-lot product changes. The correlation between 

NIR/chemometrics and IDAS2 measurements also suggests that the combination of 

these techniques could facilitate regulatory agencies in developing countries in their 

efforts to detect changes between different lots products. Specifically, due to the speed, 

sensitivity, and non-destructive nature of NIR and the dual functions (i.e. dissolution 

and permeation) of IDAS2, the regulatory authorities could use these tools (during the 

registration phase) to characterize reference lots and establish suitability criteria that 

future lots would have to meet to be allowed to enter the market.  To capitalize on the 

potential benefit of this approach, regulatory authorities in Panama, and other countries 

in the region, would need to modify their current practice of evaluating a single 

reference product lot during registration, to include at least three reference lots, which 

appears to be the number of lots necessary to develop suitable NIR models. The 

evaluation of subsequent lots would be based on a comparison of NIR spectral 

characteristics of commercial versus registration lots, with identical lots being allowed 

and not-identical lots requiring additional testing, such as evaluation in IDAS2. This 

strategy, by making possible the reduction of deviations in product performance, 

derived from formulation/manufacturing changes, would help ensure the continued 

quality, safety and efficacy of all future product lots.    
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Table 1. Formula composition for standard (current) and modified (API and excipients) 

lots of Virax
®
. 

 

 

Description 

Formula composition (% W/W) 

curren

t 
A B C D F G H I J K 

API: Acyclovir 77.0 85.2 81.5 66.7 63.0 77.0 77.0 77.0 77.0 77.0 0.0 

E
x

ci
p

ie
n

ts
 

MC 16.5 8.3 12.0 26.8 30.5 17.5 14.5 10.5 16.5 0.0 71.7 

SSG 2.0 2.0 2.0 2.0 2.0 1.0 4.0 8.0 0.0 2.0 8.7 

Povidone 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 8.7 

CCsd 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2.2 

Magnesium 

stearate 
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 8.7 

SC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 

sdL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.5 0.0 

Percent total 100.0 
100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

100.

0 

Note: MC, microcrystalline cellulose; SSG, sodium stach glycolate; CSD, Colloidal Silicon Dioxide; SC, 

sodium croscarmellose; sdL, spray dried lactose. 
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Table 2. Formula composition for standard (current) and modified (API and excipients) 

lots of Amlopin
®
. 

 

Description 
Formula composition (% W/W) 

current A B C D E F G H I J K 

API: Amlodipine besylate 4.2 4.9 4.7 3.8 3.6 4.2 4.2 4.2 4.2 4.2 4.2 0.0 

E
x

ci
p

ie
n

ts
 

MC 90.8 90.1 90.3 91.2 91.4 94.8 92.8 86.8 78.7 90.8 0.0 94.8 

SSG 4.0 4.0 4.0 4.0 4.0 0.0 2.0 8.0 16.1 0.0 4.0 4.2 

Magnesium stearate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

SC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 

sdL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.8 0.0 

Percent total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Note: MC, microcrystalline cellulose; SSG, sodium stach glycolate; SC, sodium croscarmellose; sdL, spray dried 

lactose. 

 

Table 3. Adjustable parameters of chemometric analysis for Virax
®
. 

Chemometric 

method 

Wavenumber 

region 

Number of points in 

Savitzky-Golay 2
nd

 

derivative window 

Number of factors 

or leverage 

variables 

PCA 4,000 - 10,000 cm
-1

 15 Four Factors 

PLS-DA 4,000 - 10,000 cm
-1

 15 
Four Leverage 

Variables 

PLS-DA 4,000 – 5,500 cm
-1

 15 
Four Leverage 

Variables 

Note: Each model was used to predict formulations with criteria for pass or fail as value 

for K
th

 nearest neighbor distance (KNN) ≤ 1 and for the API and excipient-modified lots 

to be separated in factor or leverage-variable three-dimensional space from current lots. 
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Table 4. Adjustable parameters of chemometric analysis for Amlopin
®
. 

Chemometric 

method 

Wavenumber 

region 

Number of Points in 

Savitzky-Golay 2
nd

 

derivative window 

Number of factors or 

leverage variables 

PCA 4,000 - 10,000 cm
-1

 11 Three Factors 

PLS-DA 4,000 - 10,000 cm
-1

 11 
Three Leverage 

Variables 

PLS-DA 4,000 - 6,000 cm
-1

 9 Four Leverage Variables 

Note: Each model was used to predict samples with criteria for acceptance or rejection 

as value for K
th

 nearest neighbour distance (KNN) ≤ 1 and for the modified lot to be 

separated in factor or leverage-variable three-dimensional space from current lot. 

 

Table 5. KNN scores calculated from PCs input data for tablets of Virax
®
. 

PCs input data using full range (4,000 – 10,000 cm
-1

) 

Reference Lots Modified Lots A-D Modified Lots F-K 

Lots 

KNN 

Score 

Distance 

(k=3) 

Lots 

KNN 

Score 

for 

k=3 

Identical to 

reference if KNN 

score ≤ 1 

Lots 

KNN 

Score for 

k=3 

Identical to 

reference if KNN 

score ≤ 1 

1 0.37 A 4.15 Not identical F 6.05 Not identical 

2 0.45 B 4.72 Not identical G 1.42 Not identical 

3 0.33 C 1.19 Not identical H 1.92 Not identical 

  D 1.31 Not identical I 1.46 Not identical 

     J 3.10 Not identical 

     K 28.24 Not identical 
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Table 6. KNN scores calculated from LVs input data for tablets of Virax
®
. 

LVs input data using full range (4,000 – 10,000 cm
-1

) 

Reference Lots Modified Lots A-D Modified Lots F-K 

Lots 

KNN 

Score 

Distance 

(k=3) 

Lots 

KNN 

Scores 

for k=3 

Identical to 

reference if 

KNN score ≤ 1 

Lots 

KNN 

Scores 

for k=3 

Identical to 

reference if KNN 

score ≤ 1 

1 0.38 A 4.84 Not identical F 8.33 Not identical 

2 0.45 B 5.57 Not identical G 1.76 Not identical 

3 0.37 C 1.23 Not identical H 2.14 Not identical 

  D 1.42 Not identical I 1.66 Not identical 

     J 3.18 Not identical 

     K 37.68 Not identical 

 

 

Table 7. KNN scores calculated from PCs input data for tablets of Amlopin
®
. 

PCs input data using full range (4,000 – 10,000 cm
-1

) 

Reference Lots Modified Lots A-D Modified Lots E-K 

Lots 
KNN 

scores 
Lots 

KNN 

scores 

for k =3 

Identical to 

reference if 

KNN score ≤ 1 

Lots 

KNN 

scores for 

k =3 

Identical to 

reference if 

KNN score ≤ 1 

1 0.34 A 0.35 identical E 0.38 identical 

2 0.38 B 0.41 identical F 0.40 identical 

3 0.30 C 0.39 identical G 0.46 identical 

  D 0.33 identical H 0.38 identical 

     I 0.36 identical 

     J 8.64 Not identical 

     K 1.68 Not identical 
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Table 8. KNN scores calculated from LVs input data for tablets of Amlopin
®
. 

LVs input data using full range (4,000 – 10,000 cm
-1

) 

Reference Lots Modified Lots A-D Modified Lots E-K 

Lots 
KNN Scores 

(mean of 40) 
Lots 

KNN 

scores 

for k 

=3 

Identical to 

reference if 

KNN score ≤ 1 

Lots 

KNN 

scores 

for k =3 

Identical to 

reference if KNN 

score ≤ 1 

1 0.36 A 1.64 Not identical E 1.66 Not identical 

2 0.47 B 1.62 Not identical F 1.58 Not identical 

3 0.51 C 1.72 Not identical G 1.59 Not identical 

  D 1.57 Not identical H 1.54 Not identical 

     I 1.34 Not identical 

     J 25.01 Not identical 

     K 4.20 Not identical 

 

 

 

 

Figure 1. Score plot of PC1 – PC3. The NIR (4,000 – 10,000 cm
-1

) spectra of Virax
®

 

tablets were pre-processed by SNV, Savitzky-Golay 2
nd

 derivative, and mean centered 

before applying the PCA. (A) Comparison between the reference lots and API-modified 

lots and (B) Comparison between the reference lots and excipient-modified lots. 
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Figure 2. Score plot of PC1 – PC3. The NIR (4,000 – 10,000 cm
-1

) spectra of the 

Amlopin
®

 tablets were pre-processed by SNV, Savitzky-Golay 2
nd

 derivative, and mean 

centered before applying the PCA. (A) Comparison between the reference lots and API-

modified lots and (B) Comparison between the reference lots and excipient-modified 

lots. 

 

 

 

Figure 3. Partial least squares discriminant analysis of full spectra (4,000 – 10,000 cm
-1

) 

for Virax
®
 tablets. (A) Comparison between the reference lots and API-modified lots. 

(B) Comparison between the reference lots and excipient-modified lots. 
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Figure 4. Partial least squares discriminant analysis of partial spectra (4,000 - 5,500 cm
-1

) 

for Virax
®
 tablets. (A) Comparison between the reference lots and API-modified lots. (B) 

Comparison between the reference lots and excipient-modified lots. 

 

 

 

 

Figure 5. Partial least squares discriminant analysis of full spectra (4,000 – 10,000 cm
-1

) 

for Amlopin
®
 tablets. (A) Comparison between the reference lots and the API-modified 

lots. (B) Comparison between the reference lots and the excipient-modified lots. 
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Figure 6. Partial least squares discriminant analysis of partial spectra (4,000 – 6,000 cm
-

1
) for Amlopin

®
 tablets. (A) Comparison between the reference lots and API-modified 

lots (A-D). (B) Comparison between the reference lots and the excipient-modified lots 

(E-I). 
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Figure 7.  Effect of modifications in acyclovir formulation on in vitro dissolution and 

permeation. (A) Dissolution profiles of acyclovir formulations in IDAS2 assays. (B) 

Permeation profiles of acyclovir formulations across C2BBe1 monolayers in IDAS2 

assays. 
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Figure 8. Effect of modifications in amlodipine formulation on in vitro dissolution and 

permeation. (A) Dissolution profiles of amlodipine formulations in IDAS2 assays. (B) 

Permeation profiles of amlodipine formulations across C2BBe1 monolayers in IDAS2 

assays. 
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